Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples
In this work, we investigated the effect of morphology on the analytical performance of α-Fe2O3 nanostructures-based electrochemical sensors toward chloramphenicol (CAP) antibiotic using three designed morphologies including α-Fe2O3 nano-tube (α-Fe2O3-T), α-Fe2O3 nano-rice (α-Fe2O3-R), and α-Fe2O3 n...
Saved in:
Main Authors: | , , |
---|---|
Format: | Bài trích |
Language: | English |
Published: |
IOP Publishing
2022
|
Subjects: | |
Online Access: | https://iopscience.iop.org/article/10.1149/1945-7111/ac4db0 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5884 https://doi.org/10.1149/1945-7111/ac4db0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:localhost:PNK-5884 |
---|---|
record_format |
dspace |
spelling |
oai:localhost:PNK-58842022-08-17T05:54:54Z Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples Nguyen, Ngoc Huyen Ngo, Xuan Dinh Mai, Quan Doan Morphology Nanostructures In this work, we investigated the effect of morphology on the analytical performance of α-Fe2O3 nanostructures-based electrochemical sensors toward chloramphenicol (CAP) antibiotic using three designed morphologies including α-Fe2O3 nano-tube (α-Fe2O3-T), α-Fe2O3 nano-rice (α-Fe2O3-R), and α-Fe2O3 nano-plate (α-Fe2O3-P). Among these morphologies, α-Fe2O3-T displayed an outstanding electrochemical activity owing to the unique hollow structure and large specific surface area. However, due to the small pores size, α-Fe2O3-T showed the high steric hindrance (SD) effect towards an antibiotic with complex molecular structure, as CAP, leading to a significant decrease of their CAP electrochemical sensing performance. The CAP analytical performance of α-Fe2O3-R was highest in investigated morphologies owing to a high density of exposed Fe3+ as well as less SD effect towards CAP molecules. Under optimized conditions, α-Fe2O3-R-based CAP electrochemical sensor reached an electrochemical sensitivity of 0.92 μA μM−1 cm−2 with a LOD of 0.11 μM in the detection range from 2.5–50 μM. In addition, all these α-Fe2O3 nanostructures-based electrochemical sensors had excellent stability and high anti-interference ability for CAP analysis in a complex food matrix, as shrimp sample. This study provides valuable insights into the morphology-dependent sensing properties of α-Fe2O3 nanostructures towards antibiotics, which is helpful to the design of novel α-Fe2O3-based electrochemical nanosensors. 2022-07-13T01:59:48Z 2022-07-13T01:59:48Z 2022 Bài trích https://iopscience.iop.org/article/10.1149/1945-7111/ac4db0 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5884 https://doi.org/10.1149/1945-7111/ac4db0 en IOP Publishing |
institution |
Digital Phenikaa |
collection |
Digital Phenikaa |
language |
English |
topic |
Morphology Nanostructures |
spellingShingle |
Morphology Nanostructures Nguyen, Ngoc Huyen Ngo, Xuan Dinh Mai, Quan Doan Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples |
description |
In this work, we investigated the effect of morphology on the analytical performance of α-Fe2O3 nanostructures-based electrochemical sensors toward chloramphenicol (CAP) antibiotic using three designed morphologies including α-Fe2O3 nano-tube (α-Fe2O3-T), α-Fe2O3 nano-rice (α-Fe2O3-R), and α-Fe2O3 nano-plate (α-Fe2O3-P). Among these morphologies, α-Fe2O3-T displayed an outstanding electrochemical activity owing to the unique hollow structure and large specific surface area. However, due to the small pores size, α-Fe2O3-T showed the high steric hindrance (SD) effect towards an antibiotic with complex molecular structure, as CAP, leading to a significant decrease of their CAP electrochemical sensing performance. The CAP analytical performance of α-Fe2O3-R was highest in investigated morphologies owing to a high density of exposed Fe3+ as well as less SD effect towards CAP molecules. Under optimized conditions, α-Fe2O3-R-based CAP electrochemical sensor reached an electrochemical sensitivity of 0.92 μA μM−1 cm−2 with a LOD of 0.11 μM in the detection range from 2.5–50 μM. In addition, all these α-Fe2O3 nanostructures-based electrochemical sensors had excellent stability and high anti-interference ability for CAP analysis in a complex food matrix, as shrimp sample. This study provides valuable insights into the morphology-dependent sensing properties of α-Fe2O3 nanostructures towards antibiotics, which is helpful to the design of novel α-Fe2O3-based electrochemical nanosensors. |
format |
Bài trích |
author |
Nguyen, Ngoc Huyen Ngo, Xuan Dinh Mai, Quan Doan |
author_facet |
Nguyen, Ngoc Huyen Ngo, Xuan Dinh Mai, Quan Doan |
author_sort |
Nguyen, Ngoc Huyen |
title |
Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples |
title_short |
Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples |
title_full |
Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples |
title_fullStr |
Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples |
title_full_unstemmed |
Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples |
title_sort |
unraveling the roles of morphology and steric hindrance on electrochemical analytical performance of α-fe2o3 nanostructures-based nanosensors towards chloramphenicol antibiotic in shrimp samples |
publisher |
IOP Publishing |
publishDate |
2022 |
url |
https://iopscience.iop.org/article/10.1149/1945-7111/ac4db0 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5884 https://doi.org/10.1149/1945-7111/ac4db0 |
_version_ |
1751856286028267520 |
score |
8.891787 |