Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films
This work develops the elastically collective nonlinear Langevin equation theory to investigate, for the first time, the glassy dynamics in capped metallic glass thin films. Finite-size effects on the spatial gradient of structural relaxation time and glass transition temperature (Tg) are calculated...
Lưu vào:
Tác giả chính: | |
---|---|
Định dạng: | Bài trích |
Ngôn ngữ: | English |
Nhà xuất bản: |
American Chemical Society
2022
|
Chủ đề: | |
Truy cập trực tuyến: | https://pubs.acs.org/doi/10.1021/acs.jpcb.1c08862 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5752 https://doi.org/10.1021/acs.jpcb.1c08862 |
Từ khóa: |
Thêm từ khóa
Không có từ khóa, Hãy là người đầu tiên đánh dấu biểu ghi này!
|
id |
oai:localhost:PNK-5752 |
---|---|
record_format |
dspace |
spelling |
oai:localhost:PNK-57522022-08-17T05:54:52Z Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films Anh, D. Phan Amorphous materials Thin films This work develops the elastically collective nonlinear Langevin equation theory to investigate, for the first time, the glassy dynamics in capped metallic glass thin films. Finite-size effects on the spatial gradient of structural relaxation time and glass transition temperature (Tg) are calculated at different temperatures and vitrification criteria. Molecular dynamics is significantly slowed down near rough solid surfaces, and the dynamics at location far from the interfaces is sped up. In thick films, the mobility gradient normalized by the bulk value obeys the double-exponential form since interference effects between two surfaces are weak. Reducing the film thickness induces a strong dynamic coupling between two surfaces and flattens the relaxation gradient. The normalized gradient of the glass transition temperature is independent of vitrification time scale criterion and can be fitted by a superposition function as the films are not ultrathin. The local fragility is found to remain unchanged with location. This finding suggests that one can use Angell plots of bulk relaxation time and the Tg spatial gradient to characterize glassy dynamics in metallic glass films. Our computational results agree well with experimental data and simulation 2022-05-05T07:26:18Z 2022-05-05T07:26:18Z 2022 Bài trích https://pubs.acs.org/doi/10.1021/acs.jpcb.1c08862 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5752 https://doi.org/10.1021/acs.jpcb.1c08862 en American Chemical Society |
institution |
Digital Phenikaa |
collection |
Digital Phenikaa |
language |
English |
topic |
Amorphous materials Thin films |
spellingShingle |
Amorphous materials Thin films Anh, D. Phan Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films |
description |
This work develops the elastically collective nonlinear Langevin equation theory to investigate, for the first time, the glassy dynamics in capped metallic glass thin films. Finite-size effects on the spatial gradient of structural relaxation time and glass transition temperature (Tg) are calculated at different temperatures and vitrification criteria. Molecular dynamics is significantly slowed down near rough solid surfaces, and the dynamics at location far from the interfaces is sped up. In thick films, the mobility gradient normalized by the bulk value obeys the double-exponential form since interference effects between two surfaces are weak. Reducing the film thickness induces a strong dynamic coupling between two surfaces and flattens the relaxation gradient. The normalized gradient of the glass transition temperature is independent of vitrification time scale criterion and can be fitted by a superposition function as the films are not ultrathin. The local fragility is found to remain unchanged with location. This finding suggests that one can use Angell plots of bulk relaxation time and the Tg spatial gradient to characterize glassy dynamics in metallic glass films. Our computational results agree well with experimental data and simulation |
format |
Bài trích |
author |
Anh, D. Phan |
author_facet |
Anh, D. Phan |
author_sort |
Anh, D. Phan |
title |
Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films |
title_short |
Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films |
title_full |
Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films |
title_fullStr |
Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films |
title_full_unstemmed |
Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films |
title_sort |
confinement effects on the spatially inhomogeneous dynamics in metallic glass films |
publisher |
American Chemical Society |
publishDate |
2022 |
url |
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c08862 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5752 https://doi.org/10.1021/acs.jpcb.1c08862 |
_version_ |
1751856314226573312 |
score |
8.891145 |