Neutrino mass and dark matter from an approximate B − L symmetry

We argue that neutrino mass and dark matter can arise from an approximate B − L symmetry. This idea can be realized in a minimal setup of the flipped 3-3-1 model, which discriminates lepton families while keeping universal quark families and uses only two scalar triplets in order for symmetry breaki...

Full description

Saved in:
Bibliographic Details
Main Authors: Duong Van, Loi, Phung Van, Dong, Dang Van, Soa
Format: Article
Language:English
Published: Springer Link 2020
Subjects:
Online Access:https://dlib.phenikaa-uni.edu.vn/handle/PNK/390
https://doi.org/10.1007/JHEP05(2020)090
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We argue that neutrino mass and dark matter can arise from an approximate B − L symmetry. This idea can be realized in a minimal setup of the flipped 3-3-1 model, which discriminates lepton families while keeping universal quark families and uses only two scalar triplets in order for symmetry breaking and mass generation. This proposal contains naturally an approximate non-Abelian B − L symmetry which consequently leads to an approximate matter parity. The approximate symmetries produce small neutrino masses in terms of type II and III seesaws and may make dark matter long lived. Additionally, dark matter candidate is either unified with the Higgs doublet by gauge symmetry or acted as an inert multiplet. The Peccei-Quinn symmetry is discussed. The gauge and scalar sectors are exactly diagonalized. The signals of the new physics at colliders are examined.