The Data Science Design Manual /

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and...

Full description

Saved in:
Bibliographic Details
Main Author: Skiena, Steven S, (Author)
Format: Specialized reference book
Language:English
Published: Germany : Springer, 2017.
Edition:1st ed.
Series:Texts in Computer Science,
Subjects:
Online Access:https://dlib.phenikaa-uni.edu.vn/handle/PNK/1910
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02762cam a22003735i 4500
005 20210625113542.0
008 210625s2017 gw |||| | |||| ||eng
999 |c 6651  |d 6651 
020 |a 9783319856636  |c 2320000 
040 |a Phenikaa Uni  |b eng  |e pn  |e aacr2  |c Phenikaa Uni 
041 |a eng 
044 |a gw 
082 0 4 |a 006.312  |2 23  |b TH200D 2017 
100 1 |a Skiena, Steven S,  |e author. 
245 1 4 |a The Data Science Design Manual /  |c by Steven S. Skiena. 
250 |a 1st ed. 
260 |a Germany :  |b Springer,  |c 2017. 
300 |a 426 tr. ;  |c 24cm. 
490 1 |a Texts in Computer Science, 
520 |a This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. 
650 0 |a Big data. 
650 0 |a Data mining. 
650 0 |a Mathematics. 
650 0 |a Pattern recognition. 
650 0 |a Statistics. 
650 0 |a Visualization. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
650 2 4 |a Big Data/Analytics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/522070 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S12008 
650 2 4 |a Visualization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14034 
856 |u https://dlib.phenikaa-uni.edu.vn/handle/PNK/1910 
942 |2 ddc  |c STKCN 
952 |0 0  |1 0  |2 ddc  |4 0  |6 006_312000000000000_TH200D_2017  |7 1  |9 30719  |a PHENIKAA  |b PHENIKAA  |c PNK_103  |d 2021-06-25  |e Mua  |g 2320000.00  |l 0  |o 006.312 TH200D 2017  |p 00027784  |r 2021-06-25  |v 2320000.00  |w 2021-06-25  |y STKCN