Quantum Probability and Related Topics: Qp-Pq. Volume VI : Qp-Pq: Quantum Probability and White Noise Analysis /

This volume contains several surveys of important developments in quantum probability. The new type of quantum central limit theorems, based on the notion of free independence rather than the usual Boson or Fermion independence is discussed. A surprising result is that the role of the Gaussian for t...

Full description

Saved in:
Bibliographic Details
Main Author: Luigi, Accardi
Format: Specialized reference book
Language:English
Published: Singapore : World Scientific, c1991.
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02709nam a22002657a 4500
005 20210315144444.0
008 210315s1991 si a|||| |||| 0|| u eng d
999 |c 6473  |d 6473 
020 |a 9810207166 
040 |a Phenikaa Uni  |b vie  |c Phenikaa Uni  |e aacr2 
041 |a eng 
044 |a si 
082 0 4 |2 23  |a 539  |b QU105T V.6-c1991 
100 |a  Luigi, Accardi 
245 |a Quantum Probability and Related Topics: Qp-Pq.  |c  Luigi Accardi  |n Volume VI :  |p Qp-Pq: Quantum Probability and White Noise Analysis / 
260 |a Singapore :  |b World Scientific,  |c c1991. 
300 |a 523tr. ;  |c 21cm 
520 3 |a This volume contains several surveys of important developments in quantum probability. The new type of quantum central limit theorems, based on the notion of free independence rather than the usual Boson or Fermion independence is discussed. A surprising result is that the role of the Gaussian for this new type of independence is played by the Wigner distribution. This motivated the introduction of new type of quantum independent increments noise, the free noise and the corresponding stochastic calculus. A further generalization, the ϖ-noises, is discussed. The free stochastic calculus is shown to be able to fit naturally into the general representation free calculus. The basic free are shown to be realized as non-adapted stochastic integrals with respect to the usual Boson white noises. Quantum noise on the finite difference algebra is expressed in terms of the usual Boson white noises. A new quantum way of looking at classical stochastic flows, in particular diffusions on Riemannian Manifolds is explained. Quantum groups are discussed from the point of view of possible applications to quantum probability. The applications of quantum probability to physics are surveyed. 
650 0 4 |a Vật lý lượng tử 
650 0 4 |a Quantum probalility 
942 |2 ddc  |c STKCN 
952 |0 0  |1 0  |2 ddc  |4 0  |6 539_000000000000000_QU105T_V_6C1991  |7 1  |9 26685  |a PHENIKAA  |b PHENIKAA  |c PNK_103  |d 2021-03-15  |e Sách tặng  |l 0  |o 539 QU105T V.6-c1991  |p 00026561  |r 2021-03-15  |v 1000000.00  |w 2021-03-15  |y STKCN 
952 |0 0  |1 0  |2 ddc  |4 0  |6 539_000000000000000_QU105T_V_6C1991  |7 0  |9 26686  |a PHENIKAA  |b PHENIKAA  |c PNK_103  |d 2021-03-15  |e Sách tặng  |l 0  |o 539 QU105T V.6-c1991  |p 00026562  |r 2021-03-15  |v 1000000.00  |w 2021-03-15  |y STKCN 
952 |0 0  |1 0  |2 ddc  |4 0  |6 539_000000000000000_QU105T_V_6C1991  |7 0  |9 26687  |a PHENIKAA  |b PHENIKAA  |c PNK_103  |d 2021-03-15  |e Sách tặng  |l 0  |o 539 QU105T V.6-c1991  |p 00026563  |r 2021-03-15  |v 1000000.00  |w 2021-03-15  |y STKCN 
952 |0 0  |1 0  |2 ddc  |4 0  |6 539_000000000000000_QU105T_V_6C1991  |7 0  |9 26688  |a PHENIKAA  |b PHENIKAA  |c PNK_103  |d 2021-03-15  |e Sách tặng  |l 0  |o 539 QU105T V.6-c1991  |p 00026564  |r 2021-03-15  |v 1000000.00  |w 2021-03-15  |y STKCN