Analyzing neural time series data : theory and practice /

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conce...

Full description

Saved in:
Bibliographic Details
Main Author: Cohen, Mike X., 1979-
Format: Specialized reference book
Language:English
Published: London : The MIT Press, 2014.
Series:Issues in clinical and cognitive neuropsychology
Subjects:
Online Access:https://dlib.phenikaa-uni.edu.vn/handle/PNK/1547
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03213cam a2200289 i 4500
005 20210604112019.0
008 200605s2014 mauaf b 001 0 eng
999 |c 5169  |d 5169 
020 |a 9780262019873 (hardcover : alk. paper)  |c 2266000đ 
040 |a Phenikaa Uni  |b eng  |e aacr2  |c Phenikaa Uni 
041 |a eng 
044 |a mau 
082 0 0 |a 612.8  |2 23  |b A105A 2014 
100 1 |a Cohen, Mike X.,  |d 1979- 
245 1 0 |a Analyzing neural time series data :  |b theory and practice /  |c Mike X. Cohen. 
260 |a London :  |b The MIT Press,  |c 2014. 
300 |a xviii, 578 pages, 16 unnumbered pages of plates :  |b illustrations ;  |c 24 cm. 
490 0 |a Issues in clinical and cognitive neuropsychology 
520 3 |a A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches. 
650 0 |a Neural networks (Neurobiology) 
650 0 |a Neural networks (Computer science) 
650 0 |a Computational neuroscience. 
650 0 |a Artificial intelligence  |x Biological applications. 
653 |a  Sinh học thần kinh  |a  Mạng lưới thần kinh  |a  Khoa học thần kinh tính toán. 
856 |u https://dlib.phenikaa-uni.edu.vn/handle/PNK/1547 
942 |2 ddc  |c STKCN 
952 |0 0  |1 0  |2 ddc  |4 0  |6 612_800000000000000_A105A_2014  |7 1  |9 17861  |a PHENIKAA  |b PHENIKAA  |c PNK_105  |d 2020-06-05  |e VP mua  |g 2266000.00  |l 0  |o 612.8 A105A 2014  |p 00018367  |r 2020-06-05  |v 2300000.00  |w 2020-06-05  |x 1 bản đọc tại chỗ | TL 1 bản  |y STKCN  |z Đọc tại chỗ  |x 1 bản đọc tại chỗ  |x TL 1 bản